Question	Answer		Mark
Number			
1(a)(i)	С		(1)

Question Number	Answer	Acceptable answers	Mark
1(a)(ii)	Any continuous line which has a section above and below the time axis without going (deliberately)	Fractions of a cycle that meet the criteria	
	back in time	Ignore anything appearing after the arrow on the time axis	(1)

Question Number	Answer	Acceptable answers	Mark
1 (b)	substitution (1) $2400/200 = 230/V_s$		
	transposition (1) (V _s =) 230 x 200/2400	substitution and transposition in either order 230/12 = 2 marks (s&t) 200/10.43 = 2 marks (s&t)	
	Evaluation (1) (V _s =) 19 (V)	19.2 (V) 19.17 (V) Give full marks for correct answer, no working 1.9 x any other power of 10 = 2	(3)

Question Number	Answer	Acceptable answers	Mark
1(c)(i)	An explanation linking any three of the following		
	step-up transformer(s) (1)increase voltages (1)	Assume 'they' refers to transformers	
	 (this) reduces the current (1) 	'steps up the voltage' scores second MP only Reject for MP2 and MP3: 'increases voltage and current.' but beware: 'increases voltage and current decreases' = 2 marks	
	(which) reduces the {heat / thermal} {energy / power} losses (1)	ignore unqualified energy losses Allow reverse arguments for last two points, e.g. high current wastes more heat energy = 2 marks Ignore references to efficiency	(3)
PhysicsA	ndMathsTutor.com	ignore step-down statements except where they contradict	

Question Number	Answer	Acceptable answers	Mark
1(c)(ii)	An explanation linking two of the following		
	 {kite / string} touching the power line (1) 	anything which implies contact for touching eg 'caught up in'	
	 {movement of charge / current} (1) 	spark ignore energy ignore electricity	
	 (electricity) { to earth / through the kite-flyer} (1) 	to ground needs idea of 'through' not 'into' the person ignore 'completing the circuit'	
	 giving (the kite-flyer) an electric shock (1) 	electrocution stopping heart	(2)

Question number	Answer	Mark
2(a)(i)	В	(1)

Question number	Answer	Mark
2(a)(ii)	A	(1)

Question	Answer	Mark
number		
2 (b)(i)	substitution into correct equation (1)	
	$= 1.9 \times 10.0 \times 9.0$	
	answer (1)	
	171 (J)	
	(which is about 170 J)	
	, ,	
	Answer must be shown to	
	3 significant figures	(2)

Question number	Answer	Additional guidance	Mark
2 (b)(ii)	rearrangement (1) (useful energy transferred) = efficiency × total energy	award full marks for correct numerical answer without working	
	supplied	accept (useful energy transferred) = 170 × 0.7	
	substitution (1) = (70 × 170)÷100	OR = 171 × 0.7	
	answer (1) 119 (J)	accept alternative answer from 171 (J) i.e. 120 (J)	(3)

Question number	Answer	Mark
2(c)	В	(1)

Question number	Answer	Mark
2 (d)	 An explanation that combines identification – understanding (1 mark) and reasoning/justification – understanding (2 marks): the coil contains wires which have a resistance (1) and current in the wire is due to movement of electrons through (close-packed) lattice of positive ions (1) hence collisions between electrons and ions in the lattice transfer energy from electrons to the lattice (causing the temperature of the wires/coil to rise) (1) 	(3)